Source code for pm4py.algo.conformance.footprints.variants.trace_extensive

'''
    PM4Py – A Process Mining Library for Python
Copyright (C) 2024 Process Intelligence Solutions UG (haftungsbeschränkt)

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program.  If not, see this software project's root or
visit <https://www.gnu.org/licenses/>.

Website: https://processintelligence.solutions
Contact: info@processintelligence.solutions
'''
from enum import Enum
from pm4py.util import exec_utils, xes_constants, constants, pandas_utils
from typing import Optional, Dict, Any, Union, List
from pm4py.objects.log.obj import EventLog
import pandas as pd


[docs] class Outputs(Enum): DFG = "dfg" SEQUENCE = "sequence" PARALLEL = "parallel" START_ACTIVITIES = "start_activities" END_ACTIVITIES = "end_activities" ACTIVITIES = "activities" SKIPPABLE = "skippable" ACTIVITIES_ALWAYS_HAPPENING = "activities_always_happening" MIN_TRACE_LENGTH = "min_trace_length" TRACE = "trace"
[docs] class Parameters(Enum): CASE_ID_KEY = constants.PARAMETER_CONSTANT_CASEID_KEY ENABLE_ACT_ALWAYS_EXECUTED = "enable_act_always_executed"
[docs] class ConfOutputs(Enum): FOOTPRINTS = "footprints" START_ACTIVITIES = "start_activities" END_ACTIVITIES = "end_activities" ACTIVITIES_ALWAYS_HAPPENING = "activities_always_happening" MIN_LENGTH_FIT = "min_length_fit" IS_FOOTPRINTS_FIT = "is_footprints_fit"
[docs] def apply( log_footprints: List[Dict[str, Any]], model_footprints: Dict[str, Any], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> List[Dict[str, Any]]: """ Apply footprints conformance between a log footprints object and a model footprints object Parameters ----------------- log_footprints Footprints of the log (trace-by-trace) model_footprints Footprints of the model parameters Parameters of the algorithm Returns ------------------ violations List containing, for each trace, a dictionary containing the violations """ if parameters is None: parameters = {} if not type(log_footprints) is list: raise Exception( "it is possible to apply this variant only on trace-by-trace footprints, not overall log footprints!" ) conf_traces = {} enable_act_always_executed = exec_utils.get_param_value( Parameters.ENABLE_ACT_ALWAYS_EXECUTED, parameters, True ) model_configurations = model_footprints[Outputs.SEQUENCE.value].union( model_footprints[Outputs.PARALLEL.value] ) ret = [] for tr in log_footprints: trace = tr[Outputs.TRACE.value] if trace in conf_traces: ret.append(conf_traces[trace]) else: trace_configurations = tr[Outputs.SEQUENCE.value].union( tr[Outputs.PARALLEL.value] ) trace_violations = {} trace_violations[ConfOutputs.FOOTPRINTS.value] = set( x for x in trace_configurations if x not in model_configurations ) trace_violations[ConfOutputs.START_ACTIVITIES.value] = ( set( x for x in tr[Outputs.START_ACTIVITIES.value] if x not in model_footprints[Outputs.START_ACTIVITIES.value] ) if Outputs.START_ACTIVITIES.value in model_footprints else set() ) trace_violations[ConfOutputs.END_ACTIVITIES.value] = ( set( x for x in tr[Outputs.END_ACTIVITIES.value] if x not in model_footprints[Outputs.END_ACTIVITIES.value] ) if Outputs.END_ACTIVITIES.value in model_footprints else set() ) trace_violations[ConfOutputs.ACTIVITIES_ALWAYS_HAPPENING.value] = ( set( x for x in model_footprints[ Outputs.ACTIVITIES_ALWAYS_HAPPENING.value ] if x not in tr[Outputs.ACTIVITIES.value] ) if Outputs.ACTIVITIES_ALWAYS_HAPPENING.value in model_footprints and enable_act_always_executed else set() ) trace_violations[ConfOutputs.MIN_LENGTH_FIT.value] = ( tr[Outputs.MIN_TRACE_LENGTH.value] >= model_footprints[Outputs.MIN_TRACE_LENGTH.value] if Outputs.MIN_TRACE_LENGTH.value in tr and Outputs.MIN_TRACE_LENGTH.value in model_footprints else True ) trace_violations[ConfOutputs.IS_FOOTPRINTS_FIT.value] = ( len(trace_violations[ConfOutputs.FOOTPRINTS.value]) == 0 and len(trace_violations[ConfOutputs.START_ACTIVITIES.value]) == 0 and len(trace_violations[ConfOutputs.END_ACTIVITIES.value]) == 0 and len( trace_violations[ ConfOutputs.ACTIVITIES_ALWAYS_HAPPENING.value ] ) == 0 and trace_violations[ConfOutputs.MIN_LENGTH_FIT.value] ) ret.append(trace_violations) conf_traces[trace] = trace_violations return ret
[docs] def get_diagnostics_dataframe( log: EventLog, conf_result: List[Dict[str, Any]], parameters: Optional[Dict[Union[str, Parameters], Any]] = None, ) -> pd.DataFrame: """ Gets the diagnostics dataframe from the log and the results of footprints conformance checking (trace-by-trace) Parameters -------------- log Event log conf_result Conformance checking results (trace-by-trace) Returns -------------- diagn_dataframe Diagnostics dataframe """ if parameters is None: parameters = {} case_id_key = exec_utils.get_param_value( Parameters.CASE_ID_KEY, parameters, xes_constants.DEFAULT_TRACEID_KEY ) import pandas as pd diagn_stream = [] for index in range(len(log)): case_id = log[index].attributes[case_id_key] is_fit = conf_result[index][ConfOutputs.IS_FOOTPRINTS_FIT.value] footprints_violations = len( conf_result[index][ConfOutputs.FOOTPRINTS.value] ) start_activities_violations = len( conf_result[index][ConfOutputs.START_ACTIVITIES.value] ) end_activities_violations = len( conf_result[index][ConfOutputs.END_ACTIVITIES.value] ) act_always_happening_violations = len( conf_result[index][ConfOutputs.ACTIVITIES_ALWAYS_HAPPENING.value] ) min_length_fit = conf_result[index][ConfOutputs.MIN_LENGTH_FIT.value] diagn_stream.append( { "case_id": case_id, "is_fit": is_fit, "footprints_violations": footprints_violations, "start_activities_violations": start_activities_violations, "end_activities_violations": end_activities_violations, "act_always_happening_violations": act_always_happening_violations, "min_length_fit": min_length_fit, }) return pandas_utils.instantiate_dataframe(diagn_stream)